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Abstract

In this paper, we aim to extend dictionary learning onto hierarchical image
representations in a principled way. To achieve dictionary atoms capture
additional information from extended receptive fields and attain improved
descriptive capacity, we present a two-pass multi-resolution cascade frame-
work for dictionary learning and sparse coding. This cascade method allows
collaborative reconstructions at different resolutions using only the same di-
mensional dictionary atoms. The jointly learned dictionary comprises atoms
that adapt to the information available at the coarsest layer, where the sup-
port of atoms reaches a maximum range, and the residual images, where the
supplementary details refine progressively a reconstruction objective. The
residual at a layer is computed by the difference between the aggregated re-
constructions of the previous layers and the downsampled original image at
that layer. Our method generates flexible and accurate representations us-
ing only a small number of coefficients. It is computationally efficient since
it encodes the image at the coarsest resolution while yielding very sparse
residuals. Our extensive experiments on multiple image coding, denoising,
inpainting and artifact removal tasks demonstrate that our method provides
superior results.
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1. Introduction1

Sparse representations of visual data promise several advantages including2

noise resilience by focusing on the consistently observed patterns in data3

distribution, improved classification performance by learning discriminative4

features, robustness by preventing the model from overfitting the training5

data, and semantic interpretation capability by allowing atoms to associate6

with meaningful attributes. As a result, they have been incorporated in7

many computer vision tasks such as compression, regularization in reverse8

problems, feature extraction, classification and recognition, interpolation for9

incomplete data, to count a few [1, 2, 3, 4, 5, 6].10

An overcomplete dictionary that leads to a sparse representation of the11

input data can be constructed from a predetermined set of vectors (predeter-12

mined dictionary) in a way that is agnostic to the data. It can also be learned13

by adapting its atoms to the data samples (learned dictionary). The per-14

formance of the predetermined dictionaries, e.g., overcomplete bases of Dis-15

crete Cosine Transform (DCT) [7], wavelets [8], curvelets [9], contourlets [10],16

shearlets [11],etc., depends on how well these bases align with the distribu-17

tion of data samples. In comparison, the learned dictionaries are derived18

from the given data, and they can be tailored to attain additional objectives.19

Noteworthy methods for obtaining learned dictionaries can be listed as the20

Method of Optimal Directions (MOD) [12], generalized PCA [13], KSVD [2],21

and Online Dictionary Learning (ODL) [14, 4]. By adapting the input data,22

the learned dictionaries provide improved performance.23

In general, the dictionary learning and sparse encoding tasks for a given
image can be formulated as a constrained optimization problem

arg min
D,xi

‖yi −Dxi‖2F s.t. ‖xi‖0 ≤ T , (1)

or its equivalent form,

arg min
D,x

∑
i

‖xi‖0 s.t. ‖yi −Dxi‖2F ≤ ε, (2)

where the input data yi ∈ Rn are image patches of size
√
n×
√
n, xi ∈ Rm×1

24

denotes the corresponding representation of the i-th patch, D ∈ Rn×m is the25

overcomplete dictionary matrix where m > n, T is the number of the non-26

zero valued coefficients, and ε is the error tolerance on the reconstruction27

error. One fundamental aspect of this model is that the coefficient vector xi28
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is sparse, in other words, T � m, which implies that the signal is composed29

of a few dictionary atoms. For an extended discussion on the solutions of the30

above objectives, please see Section 2.31

Dictionary learning methods operate on dimensional vector spaces. For32

example, 8×8 image patches are represented by 64-dimensional vectors. The33

dimensionality of the vectors, thus the size of the patches, is required to34

be constant for the distance computations and the formulation of the opti-35

mization objectives. However, dictionary atoms obtained in this fashion are36

blind to larger context since they only see the local information contained37

within the constant size image patches. Simply increasing the patch size38

may extend the support area for contextual information yet it also decreases39

the flexibility of the dictionary to fit the data, puts a limit on the number40

of data samples and increases the computational complexity exponentially.41

Moreover, the optimal patch size may vary depending on the underlying in-42

formation, e.g., visual texture, in the image. To attain the reconstruction43

error small while keeping the sparsity constraint low, a finer partitioning of44

the image by smaller patches would be preferable within the highly textured45

regions, yet larger blocks would result in improved sparsity for the smooth46

areas. Assume that we have a 256×256 image where all pixels have the same47

value. Using the conventional 8×8 overlapping patches we need more than48

60K coefficients to encode the image, yet the same image can be represented49

using only a small number of coefficients of larger patches, even only a single50

coefficient in the ideal case of the patch is equal to the size of the image.51

As a remedy, multi-scale dictionary learning methods aim to learn dic-52

tionaries at different image resolutions for the same patch size, e.g. using53

shearlets, wavelets, and Laplacian pyramid [4, 5, 15, 16, 17]. A drawback of54

these methods is that each layer in the pyramid is either processed indepen-55

dently or in small frequency (power spectrum) bands; thus the reconstruction56

errors of the coarser layers are projected directly onto the finest layer. Be-57

sides, this impedes compensation of such errors by and in the previous layers.58

Since the reconstruction error is correlated with the local texture, to attain59

a spatially consistent reconstruction, all layers need to be constructed ac-60

curately. Instead of learning in different image resolutions, [18] first builds61

a set of separate dictionaries for the quadtree partitioned patches and then62

it pads (with zeros) the smaller patches to the largest scale. However, the63

dimensionality of the dictionary learned in this fashion is still proportional64

to the maximum patch size, which brings increased computational load and65

memory requirements.66
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Figure 1: (a) Original image. (b) Corrupt image where 93% of the original pixels are
removed. (c) Reconstruction result of KSVD. PSNR is 11.80 dB. (d) Reconstruction
result of our method. PSNR is 33.34 dB. (e) Reconstructed quality vs. the rate of missing
pixels. As visible, our method is superior to KSVD.

Moreover, existing multi-scale dictionary learning methods often overlook67

the redundancy between the layers. As a consequence, in addition to requir-68

ing larger dimensional dictionaries, a high number of coefficients are spent69

unnecessarily on the smooth areas due to lack of communication between the70

layers. To the best of our knowledge, no conventional method offers a sys-71

tematic solution where encodings of the coarser scales progressively enhance72

the reconstruction results of the finer layers.73

Our Contributions74

We present a computationally efficient framework that employs multi-75

resolution residual maps for dictionary learning and sparse coding in order76

to address the above shortcomings and allow dictionary atoms to access larger77
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context for an improved descriptive capacity.78

To this end, we start with building an image pyramid using bicubic inter-79

polation. In the first pass, we learn a dictionary from the coarsest resolution80

layer and obtain the sparse representation. We upsample the reconstructed81

image and compute the residual in the next layer. The residual at a level82

is computed by the difference between the aggregated reconstructions from83

the coarser layers in a cascade fashion and the downsampled original image84

at that layer. Dictionaries are learned from the residual in every layer. We85

use the same patch size yet different resolution input images, which is instru-86

mental in reducing computations and capturing larger context through. The87

computational efficiency stems from encoding at the coarsest resolution and88

encoding the residuals that are significantly sparse. This enables our cascade89

to go as deep as needed without any compromise.90

In the second pass, we collect all patches from all cascade layers and learn91

a single dictionary for a final encoding. This naturally solves the problem of92

determining how many atoms to be assigned at a hierarchical layer. Thus, all93

atoms in the dictionary have the same dimensionality while their receptive94

fields vary depending on the layer.95

Compared to existing multi-scale approaches operating indiscriminately96

on image pyramids or wavelets, our dictionary comprises atoms that adapt97

to the information available at each layer. The details learned from resid-98

ual images progressively refine our reconstruction objective. This allows our99

method to generate a flexible image representation using much smaller num-100

ber of coefficients. Our extensive experiments demonstrate that our method101

applies favorably in image coding, denoising, inpainting and artifact removal102

tasks. Figure 1 shows an inpainting result generated by our method where103

the input image was missing 93% of its pixels. As visible, we can recover104

even the very large areas of missing pixels.105

2. Related Work106

The nature of the dictionary learning objective makes it an NP-hard107

problem since neither the dictionary nor the coefficients are known. To han-108

dle this challenge, most dictionary learning algorithms alternate between the109

sparse coding and dictionary updating steps iteratively by fixing one while110

optimizing the other. For example, MOD updates the dictionary by solv-111

ing an analytic solution of the quadratic problem by using Moore-Penrose112

pseudo-inverse; KSVD incorporates the k-means clustering and singular value113
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decomposition by refining the coefficients and dictionary atoms recursively;114

and ODL updates the dictionary by using the first-order stochastic gradient115

descent in small batches. Adding to the complexity, sparse coding itself is an116

NP-hard problem due to the `0 norm. This objective is often approximated by117

greedy schemes such as Matching pursuit (MP) [19] and Orthogonal Match-118

ing Pursuit (OMP) [20]. Another alternative is to replace the `0-norm with119

the `p-norm with p ≤ 1. When p = 1, the solution can be approximated by120

Basis Pursuit(BP) [21], FOCal Under-determined System Solver (FOCUSS)121

[22], and Least Angle Regression (LARS) [23] to count a few.122

Multi-scale methods for image encoding have been widely studied in the123

past. Wavelets are among the premier multi-scale analysis tools in signal124

processing. Many wavelets variants, e.g., bandlets [24], contourlets [10],125

curvelets [9] as well as decomposition methods, e.g., wavelet pyramid [25],126

steerable pyramid [26], and Laplacian pyramid [27] have also been proposed.127

These methods basically improve the frequency-based analysis of Fourier128

transform by incorporating scale and spatial information.129

There have been few attempts to learn multi-scale dictionaries. In [18],130

a quadtree structure is proposed. Dictionaries with different atom dimen-131

sions are obtained for different levels of the quadtree and then concatenated132

together by zero-padding smaller atoms in a dyadic fashion. Unfortunately,133

the number of scales and the maximum dimension of dictionary atoms are134

restricted due to the heavy computational and memory requirements. Be-135

sides, this approach ignores the coarse-scale information that may be more136

suitable to represent patches using atoms of the same size.137

To overcome the computational issues, [5] extracts sub-dictionaries in the138

wavelet transform domain by exploiting the sparsity between the wavelets139

coefficients. This work leverages frequency selectivity of the individual lev-140

els of a wavelet pyramid to remove redundancy in the learned representa-141

tions. Since separate dictionaries are learned for directional subbands, its142

performance is hampered in comparison to the single-scale KSVD for im-143

age denoising tasks. Their following work [6] exploits multi-scale analysis144

and single-scale dictionary learning, fusing both outputs by using a weighted145

joint sparse coding. Since the fused dictionary is several times larger than146

its single-scale version, the computational complexity is high. Besides, its147

denoising performance is sensitive to the size and category of images. A sim-148

ilar work [4] builds multi-resolution dictionaries on the wavelet pyramid by149

employing the k-means clustering before the ODL step. For each resolution,150

it clusters the patches of three subbands and then concatenates all dictionary151
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atoms. Although its denoising performance improves due to non-local clus-152

tering on the image subbands, each layer requires a large dictionary, which153

reflects adversely on the computational load.154

Multi-resolution sparse representations are also employed for image fusion155

and super-resolution. Given a pre-trained dictionary, [16] fuses two images156

by obtaining sparse coefficients for high-pass and low-pass frequency bands157

and applying OMP. The fused coefficient columns in each band are chosen158

by maximal `1 norm of corresponding coefficients. Towards the same goal,159

[17] merges two coefficient vectors; however, the fused coefficient columns160

are selected by `2 norm. Instead of training subdictionaries independently, it161

learns 3S+1 subdictionaries jointly (S stands for the number of layers), which162

means the dimension of the matrix is (3S+ 1)n×k thus the learning stage is163

computationally expensive. In [15], authors propose a multi-scale approach164

to super-resolve the diffusion weighted images where the low-resolution dic-165

tionary is based on the shearlet transform and the high-resolution one is based166

on image intensity. In [28], a sparse representation is used to build a model167

for image interpolation. This model describes each patch as a linear combi-168

nation of similar non-local patch neighbors, and every patch is represented169

with a specific dictionary. To decrease the coherence of the representation170

basis, it clusters patches into multiple groups and learns multiple local PCA171

dictionaries.172

3. Sparse Coding on Cascade Layers173

As mentioned above, previous dictionary learning algorithms often for-
mulate the problem at hand using a linear model on a fixed dimension thus
on a fixed patch scale, which hinders exploiting dictionary atoms in their
full potential. In comparison, our approach is nonlinear due to its recursive
nature where we encode the resulting residuals of the layers in previous hier-
archical levels. In a single layer, we represent the current vector as a linear
combination of dictionary atoms, where we keep the same as single layer
sparse coding. After each layer, the representations are accumulated into the
final reconstruction at the end. Let Ŷ

′
n denote the estimated n-th layer and

Ŷ denote the reconstructed image, then the overall process can be described
as

Ŷ = Ŷ
′

0 + U(Ŷ
′

1 + U(Ŷ
′

2 + ...+ U(Ŷ
′

N))), (3)

where U is an upsampling function.174
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Figure 2: The first pass of our method for a 4-layer cascade. Y0 is the original image,
{Y3, ...,Y0} denote each layer of the image Y3 pyramid, and {D3, ...,D0} are the dic-
tionaries. D3 is learned from the downsampled image Y3 and the remaining dictionaries
are learned from the residuals {Y′

2,Y
′

1,Y
′

0}. αn are the reconstruction coefficients corre-
sponding to the residual layers Y

′

n.

A flow diagram of our framework is shown in Fig. 2 for a sample 4-175

layer cascade, where the input is a 512×512 grayscale image Y. We first176

construct an image pyramid Y = {Y0,Y1, ...YN} by bicubic downsampling.177

Here, Y0 is the finest (original) resolution and YN is the coarsest resolution.178

Other options for the image pyramid would be Gaussian pyramid, Laplacian179

pyramid, bilinear interpolation, and subsampling. Images resampled with180

bicubic interpolation are smoother and have fewer interpolation artifacts.181

We employ a two-pass scheme where in the first pass we obtain residuals182

from layer-wise dictionaries, and in the second pass, we learn a single global183

dictionary that extracts and refines the atoms of the dictionaries generated184

in the first pass.185

3.1. First Pass186

We start at the coarsest (N -th) layer in the cascade. After learning the187

layer dictionary and finding the sparse coefficients, we propagate consecu-188

tively the reconstructed images to the finer layers. In the coarsest layer, we189

process the downsampled image. In the consecutive layers, we encode and190

decode the residuals. In each layer, we keep the size of image patches identi-191

cal, which enable that a b×b patch in n-th layer corresponds to a (2nb)×(2nb)192

area in the original image. Algorithm 1 summarizes the first pass.193
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Algorithm 1 Cascade Sparse Coding
Input:

1: N (the highest pyramid layer), Y(image),
2: Tn (number of coefficient used in layer n)

Output: Y
′
, Ŷ, D̂global

3: Yn ← subsampling(Y, 2n)
4: for n = {N,N − 1, · · · , 0} do
5: if n = N then
6: Y

′
n ← Yn

7: else
8: Y

′
n ← Yn − upsample(Ŷn+1, 2)

9: Perform KSVD to learn dictionary D̂n and encode Y
′
n

10: ∀ij {x̂ij
n , D̂n} ← arg min

xij
n ,Dn

∑
ij ‖RijY

′
n −Dnx

ij
n ‖22 s.t ‖xij

n ‖0 ≤ Tn

11: if n = N then
12: Ŷn ← (

∑
ij R

T
ijRij)

−1(
∑

ij R
T
ijD̂nx̂

ij
n )

13: else
14: Ŷn ← (

∑
ij R

T
ijRij)

−1(
∑

ij R
T
ijD̂nx̂

ij
n ) + upsample(Ŷn+1, 2)

15: Y
′ ← {Y′

N ,Y
′
N−1 · · · ,Y

′
0}

16: ∀ij D̂global ← arg min
D

∑
ij ‖RijY

′ −Dxij‖22 s.t ‖xij‖0 ≤ T

17: Reconstruction:
18: Ŷ ← 0
19: for n = {N,N − 1, · · · , 0} do
20: Y

′
n = Yn − upsample(Ŷ, 2)

21: ∀ij {x̂ij
n } ← arg min

xij
n

∑
ij ‖RijY

′
n − D̂globalx

ij
n ‖22 s.t ‖xij

n ‖0 ≤ Tn

22: Ŷ ← (
∑

ij R
T
ijRij)

−1(
∑

ij R
T
ijD̂globalx̂

ij
n ) + upsample(Ŷ, 2)

23: return
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Dictionary Learning: We learn a dictionary at the coarsest layer and
use it to reconstruct the downsampled image. This layer’s dictionary D̂N is
produced by minimizing the objective function using the coarsest resolution
image patches

arg min
DN ,xij

N

∑
ij

‖RijYN −DNx
ij
N‖

2
2 + λ‖xij

N‖0 (4)

where the operator Rij is a binary matrix that extracts a square patch of194

size b× b at location (i, j) in the image then arranges the patch pixels into a195

column vector form. The parameter λ trades off the data fidelity term and196

the regularization term, and xij
N denotes the coefficients for the patch (i, j) .197

In Fig. (9), we compare the efficiency of different learning algorithms. As198

shown, KSVD [2] underperforms in comparison to a-KSVD [29] and ODL [14]199

where both ODL and a-KSVD achieve the same PSNR with fewer coefficients.200

Our method does not assume a specific dictionary learning technique, and it201

can use any dictionary learning technique regardless of the way they update202

dictionary atoms. To demonstrate that our quality and sparsity improve-203

ments are not simply due to a specific choice of dictionary learning method,204

we employ the relatively handicapped and underperforming method, the orig-205

inal KSVD, to obtain our dictionaries. We initialize the dictionary DN with206

a DCT basis by extracting several atoms from the DCT basis and then ap-207

plying Kronecker product on the atoms to generate an overcomplete matrix,208

which is similar to KSVD. Notice that using a more efficient initialization209

scheme may produce better results and improve convergence [6].210

During the dictionary learning stage, we fix all coefficient vectors xij
N and

iteratively select dictionary atoms dl
N one by one, l = {1, 2, · · · , k}. For each

atom dl
N , we extract the patches that are composed by the atom (i, j) ∈ dl

N

to compute the corresponding residual without the atom dl
N . The coefficients

are denoted as xij
N(l), which are the non-zero entries of the l-th row of the

coefficient matrix

eijN(l) = RijYN − D̂Nx
ij
N + dl

Nx
ij
N(l). (5)

Then, we arrange all eijN(l) as the columns of the overall representation error

matrix El
N . We update the atom d̂l

N and the l-th row of coefficient matrix
x̂N(l) by solving the equation

{d̂l
N , x̂N(l)} = arg min

d,x
‖El

N − dx‖2F . (6)
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Finally, we perform a SVD decomposition on the error matrix, and update211

the l-th dictionary atom d̂l
N by the first column of U, where El

N = UΣVT ;212

the coefficient vector x̂N(l) is replaced by the first column of matrix Σ(1, 1)V.213

In every iteration, all atoms and coefficients are updated simultaneously.214

Sparse Coding: After obtaining the updated dictionary, sparse coding
is employed with the Orthogonal Matching Pursuit (OMP), which is a com-
putationally efficient greedy algorithm [30]. The sparse coding stops when
the number of the non-zero coefficients reaches the upper limit TN , or the
reconstruction error becomes less than the threshold value, which depends
on the specific task in hand. We update the coefficient vector x̂ij

N as

x̂ij
N = arg min

xij
N

∑
ij

‖RijY
′

N − D̂Nx
ij
N‖

2
2 s.t. ‖xij

N‖0 ≤ TN (7)

and put it back into the dictionary learning stage to update the dictionary215

atoms and the coefficients.216

Residuals: In each layer, we use at most Tn active coefficients for each
patch to reconstruct the image and then compute the residual. The number
of coefficients governs how strong the residual should emerge. Larger values of
Tn favors for more accurate reconstructions; thus the total energy of residuals
will decay. Smaller values of Tn cause the residual to increase, not only due
to sparse coding but also resampling across layers. Since the dictionary is
designed to represent a broad spectrum of patterns to keep the encodings as
sparse as possible, Tn should be small. The reconstructed image is a weighted
average of the patches that contain the same pixel

ŶN = (
∑
ij

RT
ijRij)

−1(
∑
ij

RT
ijD̂N x̂

ij
N). (8)

After decoding based on the dictionary D̂N , we obtain the residual image
Y

′
N−1 by subtracting the upsampled reconstruction U(ŶN) from the next

layer image YN−1, e.g. Y
′
N−1 = YN−1 − U(ŶN). Here, U(·) denotes the

bicubic upsampling operator. Similar to the above dictionary learning and
sparse coding procedure for the N -th layer, we reconstruct the residual Ŷ

′
N−1

by training a separate residual dictionary DN−1 from the residual image
itself. We keep encoding and decoding on residuals up to the finest layer.
The procedure for the cascade residual dictionary learning and reconstruction
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can be expressed as follows

{x̂ij
n , D̂n} = arg min

xij
n ,Dn

∑
ij

‖RijY
′

n −Dnx
ij
n ‖22 s.t. ‖xij

n ‖0 ≤ Tn, (9)

where residual image is

Y
′

n =

{
Yn −U(Ŷn+1), 0 ≤ n < N
YN , n = N,

(10)

and the reconstructed residual is

Ŷn =

{
(
∑

ij R
T
ijRij)

−1(
∑

ij R
T
ijD̂nx̂

ij
n ) + U(Ŷn+1), 0 ≤ n < N

(
∑

ij R
T
ijRij)

−1(
∑

ij R
T
ijD̂nx̂

ij
n ) n = N.

(11)

Above, Eqn. 9 computes the coefficients with respect to the corresponding217

patches, and Eqn. 10 reconstructs the residual image for the next finer layer218

by subtracting the upsampled version of the coarser layer image from the219

image pyramid of the given layer. Similarly, Eqn. 11 is the general formula-220

tion of how we progressively reconstruct the image by adding the estimated221

residual and the upsampled image from the coarser layers.222

Increasing the number of non-zero coefficients can reduce the error caused223

by the sparse representation. There is a trade-off between the number of224

coefficients and the quality of the reconstructed image. Our goal is to use225

the minimal number of coefficients while reconstructing an image of highest226

quality.227

3.2. Second Pass228

In each layer, the more atoms we use, the better quality can be achieved.229

However, this would not be the best use of the limited number of atoms. For230

instance, image patches from the coarsest layer are limited both in quantity231

and variety. The residual images are relatively sparse which imply they do232

not require many dictionary atoms. However, it is not straightforward to233

determine the optimal number of atoms for each dictionary since the finer234

level residuals depend heavily on the coarser ones.235

Rather than keeping all dictionaries, we train a global dictionary D using236

patches from Y
′

= {YN ,Y
′
N−1, · · · ,Y

′
0}. As illustrated in Fig. 3.2, the237

dictionaries learned from Y
′

in the first pass are redundant. The overall238
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Figure 3: Left: The dictionaries learned in the first pass for the different levels (clockwise
from the upper left: the coarsest level, the second level, the third level, and the finest
level). Right: The unifying dictionary learned in the second pass.

dictionary is less repetitive thus more effective to reconstruct all four layers.239

Using a unified dictionary allows us to select most useful atoms automatically240

without making possibly suboptimal layer-wise decisions. Notice that, in this241

procedure, the number of coefficients can be chosen depending on the target242

quality of each layer.243

4. Analysis244

4.1. Role of the First Pass245

The goal of the second pass is to find a unified and compact dictionary246

that is suitable for the reconstruction of all layers. From the coarsest to247

the finest layer, our algorithm reconstructs the input images at each layer.248

In the coarsest layer, the input image is a thumbnail version of the original249

image. In the following layers, the images correspond to the residuals between250

the reconstructed images and the scaled version of the original image. Our251

layers, except the coarsest one, are different from the corresponding Laplacian252

pyramid layers. To visualize this, we show the frequency domain versions of253

the residual in the finest layer for different levels of sparsity (1, 4, 10) applied254

to all other layers in Fig. 4. We also show the frequency transform of the255

finest level Laplacian pyramid image. As visible, using a higher number256

of coefficients in our method yields smaller residuals, in particular, the low-257

frequency components are more accurately reconstructed. When the sparsity258
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Tn = 1 Tn = 4 Tn = 10 Laplacian

Figure 4: Residuals of the finest layer in the frequency domain for different values of
coefficients used for each patch of Cameraman image is as the input. Right most is the
Laplacian pyramid layer of the finest resolution. As visible, our method generates different
layers depending on the sparsity level.

level is 1, the finest level image we obtain with our method 4-a and the259

Laplacian pyramid 4-d seem similar, yet as the sparsity level increases, their260

difference dilates significantly. If we learn a dictionary using the Laplacian261

pyramid and encode all layers using one coefficient per patch, the PSNR is262

0.2 dB smaller than our hierarchical method. The PSNR will be less than263

1 dB in case our method uses 10 coefficients per patch. These show that264

our residuals and Laplacian pyramid have different characteristics. Also, the265

residual pyramid generated by our method in the first pass plays a critical266

role in the reconstruction performance.267

4.2. Second Pass: Generating a Unified Dictionary268

The nonconvex nature of the optimization algorithm for dictionary learn-269

ing, i.e., updating the steps of learning the dictionary and then the corre-270

sponding sparse coefficients in a loop, may cause the solution to converge271

into one of the local minima. In our method, we utilize the OMP for sparse272

encoding, which is a greedy algorithm that does not guarantee the global273

minimum. Although we are seeking for a linear model for every layer, the274

final dictionary is based on the dictionaries of the previous layers. Thus, the275

solution we obtain can be regarded as a combination of the previous local276

minima.277

To assess which dictionary learning method provides a higher reconstruc-278

tion performance, we compare the reconstruction power of the dictionaries279

learned by the original KSVD method and our algorithm. We reconstruct280

the same single layer image by using OMP with a different number of coeffi-281

cients. Figure 5 shows that our approach achieves higher PSNR values than282
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Barbara Boat Lena Cameraman

Figure 5: Reconstruction quality between the single layer learned dictionary and our
dictionary. Horizontal axis is the sparsity (Tn per patch), and the vertical axis is PSNR
in dB. Red: conventional dictionary, Black: dictionary generated by our algorithm.

KSVD Ours KSVD Ours

Figure 6: Left: The frequency graphs of atoms when 15 coefficients are used in reconstruc-
tion. Right: the dictionaries generated by the KSVD and our method.

using the original KSVD.283

We also notice that the probability of each dictionary atom utilized in284

our reconstruction is different from the KSVD dictionary. In [31] a method285

called Equiprobable Matching Pursuit (EMP) where a probability constraint286

is incorporated to prevent a few atoms dominating the reconstruction is pro-287

posed. Our nonlinear dictionary learning also generates a dictionary that288

can avert having one or two atoms to become dominant to others, achieving289

the same goal as EMP without imposing any additional constraints. Fig-290

ure 6 shows that the atoms in our dictionary are utilized more uniformly. In291

comparison, KSVD exploits one atom more often than others. At the same292

time, the dictionary atoms learned by our algorithm are more diverse than293

the ones in the KSVD dictionary.294
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4.3. Layers Matter295

There is a positive correlation between the quality of the reconstruction296

and the number of layers in our cascaded framework. We also notice in the297

bottom graph in Fig. 7 that the computational complexity does not change298

much with the increase of the layers. Does this mean the deeper hierarchical299

models are better?300

To seek an answer to the question of the optimal number of the layers,301

we analyze the reconstruction results for different number of layers from302

1 to 6 on three test images (Boat, Barbara, Lena) as reported in Fig. 7.303

We observe that our multi-layer reconstruction is more accurate than single304

layer reconstruction while using a smaller number of coefficients. However,305

the results do not improve remarkably after the fourth-layer reconstruction.306

Since the number of patches extracted from the fifth and sixth layers are only307

625 and 72, respectively, which is only approximately 1/400 and 1/4000 of the308

number of patches extracted from the finest layer, they hardly influence the309

dictionary building, leading a larger error for these two layers (as a result,310

using more coefficients in the following layers to fix this). On the other311

hand, reconstructing a 8×8 patch in the fifth layer is equal to a 128×128312

patch in the finest layer, which is too large to estimate accurately using313

small dictionary atoms. We find that in most images, a four-layer pyramid314

provides an optimal hierarchical representation.315

As in Fig. 7, our method does not increase the computational load in316

comparison to a single layer and it would benefit from faster optimization317

techniques for a single layer. A discussion on the converge analysis of different318

optimization techniques for a single layer such as K-SVD, Accelerated Plain319

Dictionary Learning, etc. can be found in [32].320

5. Experimental Analysis321

To demonstrate the flexibility of our method, we evaluate its performance322

on three different and popular image processing tasks: image coding, image323

denoising, and image inpainting. For a comprehensive evaluation, we build324

five different image datasets, where each dataset contains 50 images of specific325

object classes: animals, landscapes, textures, faces, and fingerprints (all color326

except the fingerprint images, which are grayscale). Some of these images327

are selected from the BSD300 [33] and CelebA [34] datasets, and the rest328

are downloaded from the websites. The size of the images in these datasets329
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Accuracy - Boat Accuracy - Barbara Accuracy - Lena

Computational load

Figure 7: Top: The PSNR vs the average number of coefficients per pixel for different
layer versions of our method and single-layer version. Bottom: Computational times with
respect to the number of coefficients used (single-layer is KSVD, others are our cascade
method).

varies from 256×256 to 480×440. The grayscale versions of sample images330

are shown in Fig. (8).331

5.1. Image Coding332

We compare our method with 5 state-of-the-art dictionary learning algo-333

rithms including both single and multi-scale methods: approximate KSVD334

(a-KSVD) [29], ODL [14], KSVD [2], multi-scale KSVD [18], multi-scale335

KSVD using wavelets (multi-wavelets) [5].336

For objectiveness, we use the same number of dictionary atoms for our and337

all other methods. Notice that, a larger dictionary would generate a sparser338

representations. We employ 4× overcomplete dictionaries, i.e. D ∈ R64×256
339

except for the multi-wavelets where the dictionary in each sub-band has as340

many atoms as our dictionary (in favor of the multi-wavelets). For multi-341

scale KSVD, the maximum dimension of dictionary atom can be 16 due to342

the storage issue and only 2 scales can be performed. Thus, we extracted343

128 atoms at each scale.344
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Sample images from 5 datasets.

Figure 9 depicts the number of coefficients per pixel as the function of the345

number of coefficient per each pixel. Each point is the average score per pixel346

for the corresponding method. As seen, our method is the best performing347

algorithm among the state-of-the-art. In all five image datasets, it achieves348

the highest PSNR scores with significantly much less number of coefficients.349

In these experiments, the patches are extracted by 1-pixel overlapping in all350

images. We use 8×8 blocks on each layer, and the cascade comprises 4 layers.351

Since the blocks in every layer have the same size, the lower resolution blocks352

efficiently represent larger receptive fields when they are upsampling onto a353

higher resolution.354

When decoding on the coarsest resolution, our method employs 8×8355

blocks, which corresponds to 8 ·2n−1×8 ·2n−1 patches on the finest (original)356

resolution using the same dictionary atoms. Since there is a single global dic-357

tionary after the second pass, all layers share the same atoms. Even though358

this may resemble the quadtree structure, our method is not limited by the359

size of the dictionary (patch size, i.e., the dimensionality of the atoms, and360

the number of the atoms). Furthermore, it is as fast as the baseline single-361

scale dictionary learning and sparse coding methods.362

Compared with other algorithms, our method can save an outstanding363

55.6%, 42.23% and 49.95% coefficients for the face, animals, and landscape364

datasets, respectively. For the image classes where spatial texture is dom-365

inant, our method is also superior by decreasing the number of coefficient366
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Figure 9: Reconstruction results on different 5 different image datasets. The horizontal
axis represents the number of coefficient per pixel and the vertical axis is the quality in
terms of PSNR (dB).

by 27.74% and 22.38% for the texture and fingerprint datasets. The ratio is367

defined as (c1 − c0)/c1, where c0 is the number of the coefficients employed368

by our algorithm and c1 is the number of the coefficients used by the second369

best algorithm. Note that, for all the five datasets, our algorithm achieves370

the highest PSNR while using much fewer coefficients. The second best al-371

gorithm is a-KSVD (Fig. (9)). Sample image coding results for qualitative372

assessment are given in Fig. 10. As shown, a-KSVD image coding generates373

inferior results even though it uses more coefficients.374

5.2. Image Denoising375

We also analyze the image denoising performance of our method and376

make comparisons with five dictionary learning algorithms. We note that377

the state of the art in denoising use collaborative and non-local techniques378

such as BM3D [35] and LSSC [1]. However, our goal here is not to design379

a yet another collaborative scheme. Instead, we aim to understand how our380

method compares to other dictionary learning methods.381

We minimize the cost function in Eqn. (12) for denoising. We use the
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(a) a-KSVD: 28.68 db PSNR (b) Our method: 32.62 db PSNR

Figure 10: Image coding results the comparison between a-KSVD and our method. Our
method uses 1309035 coefficients and achieves 32.62 db PSNR score, while a-KSVD uses
1332286 coefficients to get 28.65 dB PSNR. our method is almost 4 dB better. Enlarged
red regions are shown on the top-right corner of each image. As visible, our method
produces more detailed reconstructions.

Table 1: Denoising results on different test images for σ = 10. (M-W: multi-wavelets)

KSVD ODL a-KSVD M-W m-KSVD Ours
a 31.10 30.98 31.05 30.95 31.16 30.61
b 32.93 33.05 32.93 32.74 33.02 32.91
c 34.05 34.09 34.01 33.99 33.42 34.09
d 35.61 35.67 35.62 32.36 35.52 35.70
e 34.18 34.38 34.20 34.13 34.07 34.33
f 34.35 34.57 34.38 34.51 34.47 34.52
g 33.18 33.52 33.22 33.49 33.50 33.74
h 33.90 33.91 34.00 33.85 33.85 34.00

Table 2: Denoising results on different test images for σ = 30.

KSVD ODL a-KSVD M-W m-KSVD Ours
a 25.03 25.04 25.06 25.08 25.10 25.03
b 27.79 27.84 27.78 27.83 27.78 27.85
c 27.48 26.96 27.46 28.38 27.77 28.01
d 30.33 30.39 30.35 30.11 30.13 30.29
e 28.36 28.30 28.32 29.10 28.53 29.08
f 28.50 28.46 28.44 29.21 28.59 29.06
g 27.71 27.46 27.69 28.12 27.86 28.20
h 28.30 28.29 28.27 28.69 28.37 28.83
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Figure 11: Denoised images. Additive zero-mean Gaussian noise with σ = 30.

Table 3: Denoising results on test images for σ = 50.

KSVD ODL a-KSVD M-W m-KSVD Ours
a 22.75 20.80 22.74 23.10 22.85 22.88
b 25.75 24.27 25.73 26.06 25.63 25.95
c 24.19 22.65 24.16 26.15 24.66 25.92
d 27.80 25.09 27.84 27.79 27.52 27.85
e 26.65 26.05 26.63 27.09 26.42 27.19
f 26.72 25.27 26.70 27.14 26.43 26.85
g 26.04 25.73 26.05 26.27 25.80 26.19
h 26.45 25.82 26.43 26.63 26.20 26.56
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difference between the downsampled input image and aggregated reconstruc-
tions at each layer to terminate the OMP.

x̂ij
n = arg min

xi

∑
ij

‖xij
n ‖0

s.t.‖RijYn −Dnx
ij
n + RijU(Ŷn+1)‖22 ≤ Cσ.

(12)

Above, the reconstructed residual Ŷn+1 is defined as in Eqn. (11), and σ is382

chosen according to the variance of the noise. As before, we choose the 4-383

layer cascade and 8×8 patch size. The parameters of KSVD and multi-scale384

wavelets are set as recommenced by original authors. We fixed all hyperpa-385

rameters for all test images. Since the denoising task is totally different from386

image coding, we do not need to force the size of dictionary to be identical387

for all algorithms. In multi-scale methods, the residuals in the finer layers are388

mostly noise, which cannot be used to learn an efficient dictionary. There-389

fore, we learn a dictionary for each layer per class from the clean images,390

which is similar to the multi-wavelets. As shown in Fig. 11 for the 320×391

480 animal image and 256×256 face image, our method achieves comparable392

or higher PSNR scores than the state-of-the-art methods. In addition, our393

method can render finer details more accurately.394

We also conducted extensive experiments with varying noise levels on a set395

of different types of images in Fig. 8. Table 1, 2, and 3 present the denoising396

results (PSNR) when the Gaussian variance is 10, 30, and 50, respectively.397

The leftmost columns of these tables are the corresponding ID in Fig. 8.398

As visible, the multi-scale wavelets perform well on images with complex399

textures and when the noise level is high, and ODL is suitable for lower noise400

levels. In comparison, our algorithm is more consistent and stable.401

5.3. Image Inpainting402

Image inpainting is often used for the restoration of the damaged pho-403

tographs and the removal of specific artifacts such as missing pixels. Previ-404

ous dictionary learning based algorithms work only when the missing area is405

smaller than the corresponding patch size of the dictionary atom dimension-406

ality.407

We observed that our method generates the best image inpainting re-408

sults. As demonstrated in Fig. 1 our method can restore the missing image409

regions that are remarkably much larger than the dimension of dictionary410

atoms, outperforming the state-of-the-art methods. By reconstructing the411
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(a) original image (b) corrupted image

PSNR 28.74

(c) KSVD

PSNR 34.88

(d) Ours

Figure 12: A sample 480×320 image from the animal dataset is corrupted with large
artifacts and missing blocks. The sizes of the artifacts range from 8 to 32 pixels. Our
method efficiently removes the artifacts.

Ours: 40 dB KSVD: 26 dB Ours: 36 dB KSVD: 22 dB

Figure 13: (a-b) Inpainting results for 8×8 and 14×14 missing blocks. (c-d) Results for
16×16 to 32×32 missing blocks.

23



Table 4: Image In-painting Results

8 14 20 26 32 38 44 50
KSVD 34.76 26.96 22.03 20.18 18.86 16.43 16.48 14.24
Ours 41.59 40.78 37.54 33.80 30.25 25.87 26.12 23.44

image starting at the coarsest layer, we can fix completely missing regions.412

The larger the missing area, the smoother the restored image becomes. In413

comparison, single-scale based methods fail completely.414

Given the mask M of missing pixels, our formulation in each layer is

x̂ij
n = arg min

xn

∑
ij

‖RijM⊗ (RijY
′

n −Dnxn)‖22

s.t. ‖xij
n ‖0 ≤ Tn

(13)

where we denote ⊗ as the element-wise multiplication between two vectors.415

Figure 12 shows that our algorithm can fill in the big holes where the416

KSVD fails. To analyze our algorithm further, we randomly remove 8 differ-417

ent sized squares (8, 14, 20, 26, 32, 38, 44, and 50) at 1 to 6 image locations418

each (8 to 48 holes at each try) in the given image in Fig. 13. When the419

missing area is small, e.g. 8×8 and 14×14, our algorithm can recover with a420

high PSNR of 40 dB, which is approximately 14 dB higher than the KSVD.421

When the missing area size is between 16×16 to 32×32, our method can still422

recover with 36 dB PSNR but KSVD degrades to around 22 dB. With the423

missing areas growing, our algorithm still outperforms the KSVD almost 10424

dB. Here, we compare with the KSVD algorithm since the multi-scale KSVD425

simply increases the dimension of atoms, which leads proportionally more426

atoms to form an overcomplete dictionary. At the same time, multi-scale427

KSVD still fails to handle holes larger than the dimensionality of the atoms.428

6. Conclusion429

We presented a non-linear dictionary learning and sparse coding method430

on cascaded residuals. Our cascade allows capturing both local and global431

information. Its coarse-to-fine structure prevent from reconstructing the re-432

gions that can be well represented by the coarser layers. Our sparse coding433

can be used to progressively improve the quality of the decoded image.434

Our method provides significant improvement over the state-of-the-art435

solutions in terms of the quality of reconstructed image, reduction in the436
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number of coefficients, and computational complexity. It generates much437

higher quality images using less number of coefficients. It produces superior438

results on image inpainting, in particular, in handling of very large ratios of439

missing pixels and large gaps.440
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